
May 2015

A workshop for

SysMon

and

Zabbix 2.2.8

for seamless auxiliary data

Possible system monitoring for VLBI

2

IVS Task Force

for

Seamless Auxiliary Data

by

Alexander Neidhardt

Jim Lovell

3

IVS products are related to additional, auxiliary data from the different participating sites and IVS products are related to additional, auxiliary data from the different participating sites and IVS products are related to additional, auxiliary data from the different participating sites and IVS products are related to additional, auxiliary data from the different participating sites and

telescopes. Mainly meteorology and time offsets are currently in use but these data are not telescopes. Mainly meteorology and time offsets are currently in use but these data are not telescopes. Mainly meteorology and time offsets are currently in use but these data are not telescopes. Mainly meteorology and time offsets are currently in use but these data are not

continuously available. Furthermore, other continuously available. Furthermore, other continuously available. Furthermore, other continuously available. Furthermore, other data might be of value for future VGOS data might be of value for future VGOS data might be of value for future VGOS data might be of value for future VGOS

observations. The observations. The observations. The observations. The IVS Task Force on Seamless Auxiliary DataIVS Task Force on Seamless Auxiliary DataIVS Task Force on Seamless Auxiliary DataIVS Task Force on Seamless Auxiliary Data should show possible realizations, should show possible realizations, should show possible realizations, should show possible realizations,

make suggestions on what data should be provided and how observatories can contribute to the make suggestions on what data should be provided and how observatories can contribute to the make suggestions on what data should be provided and how observatories can contribute to the make suggestions on what data should be provided and how observatories can contribute to the

realrealrealreal----time data stream.time data stream.time data stream.time data stream.

PurposePurposePurposePurpose

Currently most of the additionally acquired, auxiliary data are only available in the form of log

file entries during a dedicated observation. In some cases it would be much better for analysis

purposes to have continuous data available outside these periods instead of estimations. Such

data are also interesting for a general overview of the current network situation or for the real-

time correlation purposes.

Furthermore, many of the additional, local data sets, which are available at some observatories

and which would be of interest for research purposes, are not directly available (e.g. Invar strain

meter measurements in the radio telescope Wettzell). Therefore in some cases it would be

helpful to have the possibility to include such additional, partly optional, local data into

research scenarios.

JustificationJustificationJustificationJustification

The main products of the IVS rely on additional, auxiliary data such as meteorology and time

corrections between local clocks and UTC. These data are part of the log files, which are

produced during the observation. All times without observations must be interpolated or

extrapolated from the existing data sets. Therefore it would have some positive effects on the

accuracy of IVS data products if data were to be continuously available.

Real-time ancillary data can also contribute in a dynamic observing scenario where scheduling

decisions are automatically made based on changing situations at the observatories. If for

example a telescope cannot observe due to high wind or an unexpected equipment failure, the

schedule could be adapted in real-time to optimize the observations by excluding or down-

weighting the affected station. This can only happen if a centralized real-time repository of

auxiliary data is established.

4

Terms of ReferenceTerms of ReferenceTerms of ReferenceTerms of Reference

The main objective can be split into two parts:

a) An initial proof-of-concept realization through data collection from a limited number of

observatories with a view to expanding data collection procedures to as many

observatories as possible (focus of the proposed group members)

b) the collection (and definition) of possible future auxiliary data

(focus of the proposed group members together with the proposed correspondents)

To enable the proof-of-concept realization using a centralized data repository, a server system

with a suitable RAID-set of hard drives should be bought by the Forschungseinrichtung

Satellitengeodäsie, Technische Universität München. It will be installed at the Geodetic

Observatory Wettzell. The server should enable the receiving of incoming data sets in different

formats and on different access points (e.g. as FTP-files or as real-time data streams on IP-

sockets). It should also have a suitable database to administer the time-tagged data and a Web

server to access current values, but also historic data files.

In a first development process, e-RemoteCtrl should be extended to send data from time-to-

time to the central repository, so that continuous data streams are available, as long as the

NASA Field System with e-RemoteCtrl is active. This step simplifies the installation of suitable

software at the different sites at the proof-of-concept stage.

In close cooperation with the developers at the AuScope network, Australia, access points and

interfaces should be realized to enable the different monitoring systems, like MONICA in

Australia and SyMon in Wettzell, Germany, to send real-time streams to the central repository

at Wettzell. The advantage of this approach is that it is independent of the NASA Field System

and therefore from the online times of the Field System PC.

Further specifications and potential data requirements should be discussed and defined during

telecon meetings. The focus will be on enabling dynamic observations in real-time and in

creating the possibility of automated processing of observation data scheduling through to

analysis. Another goal is the creation of a transition and realization plan for other IVS

telescopes after the proof-of-concept test phase has been completed.

5

Desired OutcomesDesired OutcomesDesired OutcomesDesired Outcomes

1) A first standardization of an interface for a central data repository to receive incoming

data and to fetch selected data sets from a data acquisition server.

2) The hardware and realization of a central repository at the Geodetic Observatory

Wettzell

3) An initial proof-of-concept implementation with software and hardware components at

selected observatories, which are able to send auxiliary data (focused on meteorological

data) to a central repository.

4) A list of data, which may be relevant for future VGOS observations.

5) A transition and realization plan for IVS telescopes

TimelineTimelineTimelineTimeline

Currently 2 years are proposed for the realization of the desired outcomes. The first year focuses

on the realization of the central data repository at the Geodetic Observatory Wettzell and the

realization of the e-RemoteCtrl extension. The second year focuses on the adaption of real-time

streams to existing system monitoring suites, like the Australian MONICA and the SysMon of

the Wettzell observatory. During the whole period of the task force, the new specifications

should be discussed, so that a report with the suggestions can be offered at the end of the 2

years.

Proposed Group MembersProposed Group MembersProposed Group MembersProposed Group Members

Chair: Alexander Neidhardt (IVS, Germany)

Vice-Chair: Jim Lovell (IVS, Australia)

Ed Himwich (IVS, USA)

Jamie McCallum (IVS, Australia)

Christian Plötz (IVS, Germany)

Jonathan Quick (IVS, South Africa)

Matthias Schönberger (BKG, Germany)

Proposed Group CorrespondentsProposed Group CorrespondentsProposed Group CorrespondentsProposed Group Correspondents

Johannes Böhm (IVS, Austria)

John Gipson (IVS, USA)

Rüdiger Haas (IVS, Sweden)

Arthur Niell (IVS, USA)

Axel Nothnagel (IVS, Germany)

Bill Petrachenko (IVS, Canada)

Lucia Plank (IVS, Australia/Austria)

6

Planned OperationsPlanned OperationsPlanned OperationsPlanned Operations

Telecoms should be arranged, at least each second month to discuss the required auxiliary data

sets. Selected test sites should be equipped with the e-RemoteCtrl extensions to enable the data

sending in the first phase of the test-bed realization. Stations, which are already equipped with

MONICA or SysMon, should be extended with the real-time stream and should participate to

the central repository.

7

Wettzell SysMon

(a solution for

the MCI-suggestion)

by
Chris Beaudoin (MIT Haystack)

Martin Ettl (FESG/TUM, MPIfR)

Ed Himwich (NASA, GSFC, NVI)

Alexander Neidhardt (FESG/TUM)

Matthias Schönberger (BKG)

8

VLBI2010 Monitor and Control Infrastructure (MCI) Working Document

from the MCI Collaboration Group

represented by

Chris Beaudoin (MIT Haystack)

Martin Ettl (FESG/TUM, MPIfR)

Ed Himwich (NASA, GSFC, NVI)

Alexander Neidhardt (FESG/TUM)

Matthias Mühlbauer (BKG)

Summary: This document is intended to give direction to the efforts put towards realizing a generalized

VLBI2010 Monitoring and Control Infrastructure (MCI) system based on the notes outlined in the MCI

collaboration group meeting held in Bonn Germany on March 28, 2010. This working document is currently open

to discussion among the members of the committee but after discussion and revisions it should be frozen into a

final specifications document.

1. Introduction

The VLBI2010 Monitor and Control Infrastructure (MCI) is being developed with the intent to promote

uniformity of MCI throughout the next-generation IVS network stations. The key ideas form the basis upon which

the VLBI2010 MCI architecture should be developed are:

(1) The architecture and software should be open-source and open-ended, so that stations are free to use

modify and adapt it for local needs

(2) The architecture should be hierarchically extendable, so that one MCI Node collects MCI data from different

sensors but acts itself as a sensor for further MCI Nodes in the higher hierarchy

(3) The architecture should be self-identifying in order to facilitate straightforward expansion of the station’s

MCI and promote IVS network uniformity

(4) Data logging should be cast into the form of a data management with safety, completeness, integrity and

different logging and sampling rates

With these main concepts in mind throughout the development process, the committee has adopted a nodal

structure which will incorporate a standardized setup and a MCI Interface, which each software for a sensor and

each node must realize.

2. Suggested VLBI2010 MCI Node structure of the hardware

The MCI node follows a layered structure shown in figure 2-1. On layer 1 are all sensors of different types as

temperature sensors, sensors for front-end monitoring, meteorological sensors, emergency switches etc., which

offer different kind of data in different hardware forms. Layer 2 is an optional data collimation and safety layer. It

helps to combine several sensors with hardware, to sample data with an own hardware or to realize a safety

system which must re-act on critical situation in real-time using hardware to protect human beings and the

monitored system itself with interlock connections. Layer 3 is a computer (in best case a fanless, low-energy PC)

which realizes the MCI Node for the data acquisition, preparation and presentation. All software parts for the

sensors, recorded by the node, reside there. Finally layer 4 realizes the usage of the data for presentation, further

processing, control, automation and distribution to the analyzing centers using HTML or a standardized MCI

interface.

Layer 4 can also be another MCI Node which collects data from different MCI Nodes over Ethernet and from other

direct connected hardware sensors. This allows to build-up hierarchical systems which propagate their data

throughout a monitored system to controlling and interpretation instances. High level system monitoring tools as

Nagios, Pandora FMS or Zabbix can be adapted, acting as MCI node.

The sensors itself are connected using analog or digital connections in combination with PC-cards, serial

connection of the different types as RS232 or RS485, Ethernet connections over a Local Area Network or any

other connection which can be read with software in the MCI Node (e.g. USB).

9

Fig. 2-1: Hardware structure of a MCI Node

3. Suggested VLBI2010 MCI Node structure of the software

For the internal architecture of a node the MCI group suggests the following very open and integrative way. The

main part of the node is a data storage system. As modern Data Base Management Systems (DBMS) allow many

concurrent accesses and are in several cases scalable to different hardware platforms the data storage might be

such a DBMS, e.g. PostgreSQL. It can be extended by a (proprietary) file system server, to build-up hybrid storage

possibilities, e.g. to save configuration files to the files system while the data are kept in the database for a

dedicated time period. Also for a service, which autonomously archives data from the data base to the file system,

such a parallel file server can be used. The database is completely local and can only be accessed from there.

Another part is given by servers providing access of data stored in the database. They offer such information

based on a standardized MCI interface. Two basic versions of interfaces are planned: one for the real-time data

access (only for the current values), including a timestamp, the warning level and the monitoring value itself. The

second version offers a possibility to get historic data in the same format as the real-time interface. As long as

data are existent in the database they can be individually requested for different time intervals, e.g. to support

plotting of graphs. These two interfaces offer very fast access to current as well as to historic data. Retrieving

huge blocks of historic data from the database is probably more time consuming.

While all of the so far described parts are offered by the MCI group as a software package, the “data feeder”,

which sends data into the system, must be written by each station individually. Such data injectors are MCI

Sensor Control Points (SCP). An SCP is an individual program dealing with the hardware driver. It is responsible

for the sampling, requesting, controlling, warning and time tagging. By using the standardized MCI interface they

can inject data into the data storage system. In general they can operate and manage one single or several

external hardware sensors as subsystems. This can be scaled to different requirements as one SCP can operate

several hardware sensors. But also several SCPs, each with one different sensor, can run parallel on the node.

Because of the standardized interface one node is again nothing more than a hardware SCP for another following

node, requesting all sensor values at once, collected by the lower layered node.

10

Fig. 3-1: The node internal software architecture for a simple proprietary sensor control point

Fig. 3-2: The node internal software architecture for a MCI-suggested sensor control point

The easiest way to implement such a SCP is shown in figure 3-1. It is a simple program, which runs independently

from the rest and sends in data. It is not controlled and only limited controllable from remote. In this case the

complete quality management must be done individually, offered by the SCP developer. This attempt allows an

easy startup and the connection to existing monitoring systems is possible, using simple scripts etc., as given

with the Australian MONICA system.

The MCI suggested way to implement a MCP is illustrated in figure 3-2. It uses the IDL2RPC development.

Remote Procedure Call communications are described with a simple Interface Definition Language (IDL), which

are then converted automatically into code. It includes additional safety features, as e.g. a watchdog, on the server

side. Therefore a MCI suggested SCP is an IDL2RPC server, which is controlled by the internal control structures

11

of IDL2RPC offering its service on a dedicated port to the external environment. Therefore IDL2RPC requests can

be sent directly to the SCP, which also offers the possibility for direct commanding. To process the requests

parallel to the hardware control, each server can be configured to use threads (including all of the necessary

semaphore methods to deal with critical sections, accessing memory or devices parallel).

Each SCP can also write its own data files to the file system, which allows higher data rates. All files are stored in

a dedicated directory location, which is accessible either with NFS or Samba. The directory structure is individual

for the proprietary files, written directly from the proprietary, direct writing SCPs. The parallel standardized file

archiving system separates data into daily, monthly and yearly sections in another folder of this directory tree.

The SCP processes are started automatically on startup time of the node computer. During the very first startup

they must register themselves at the data storage system. After then the servers get their startup configuration

from the data storage system each startup, which they must request during the start. The registration is done by

sending in the current configuration file content which must be of the style shown in code 3-1 to 3-3. The

dedicated identifier tags must be defined. Beside these individual others are allowed. The configuration is then

saved within the database, acting as a centralized data stock for the configuration. Local changes in the servers

must be registered again. All other changes can be propagated from remote via the data storage system.

<MCISensorControlPoint>
 ControlPointID = Wz_Invar_1 # Unique identifier (name or number) for a sensor
 # in a system => this will be converted to the MCI
 # identifier of <SCPI D>(<IPADR>,<PORT>)
 ControlPointType = IDL2RPC # Type of this control point, e.g. IDL2RPC or PRO PRIETARY
 ControlPointPort = 50500 # Access port of the SCP for direct requests
 # Individual control point configuration values e .g. device settings for all sensors
 <MCISensor>
 # Connected hardware sensor
 SensorID = Wz_TempCenter_1 # Unique identifier (name or number) for a sensor
 # in a system
 SensorName = TempCenter # Identifying name of a sensor controlled by SCP
 SensorType = Temperature sensor # Type of sensor e.g. temperature sensor
 SensorUnit = °C # Unit of the measured value
 SensorManufacturer = Company # Manufacturer of the sensor
 SensorModel = AX510Temp # Model number etc. of the sensor
 SensorPosition = Midway in azimuth axis # Descriptive position explanation or
 # geo metric location
 SensorUpdateInterval = 180s # Time steps between each value update (~ rate)
 # in seconds [s] or microseconds [us]
 SensorResolution = 0.05 # Resolution of sensor in the above unit
 # (also defines the valid decimal places)
 SensorDataAvailabilityTime = 1d # Direct availability of data from database
 # in days [d] or seconds [s]
 SensorMinLimit = -20 # Lower limit of representable values
 SensorMaxLimit = 50 # Upper limit of representable values
 SensorMinWarningLimit = -15 # Lower than this value throws warning state (or ‘ off’)
 SensorMaxWarningLimit = 25 # Greater than this value throws warning state
 # (or ‘off’)
 SensorMinAlertLimit = -18 # Lower than this value throws alert state (or ‘off’)
 SensorMaxAlertLimit = 30 # Greater than this value throws alert state (or ‘off’)
 SensorFlagProvider = yes # Flag that server collects HW data and offers them
 SensorFlagConsumer = no # Flag that data can be sent to the server
 SensorFlagCommandable = no # Flag that server offers a command line funct.
 SensorFlagManageable = no # Flag that server offers additional RPC funct.
 SensorDataArchiveDirectory = /archive/MCI/ # Directory for standard archive service
 # or empty
 SensorPropArchiveDirectory = # Directory for proprietary SCP data archiving
 # or empty
 # Individual sensor configuration values e.g. sensor specific device settings
 </MCISensor>
 <MCISensor>
 ...
 </MCISensor>
 <MCISensorSubnode>
 # Connected MCI subnode
 </MCISensorSubnode>
 ...
</MCISensorControlPoint>

Code 3-1: Configuration example for a MCI Sensor Control Point with connected hardware sensors

<MCISensorControlPoint>

12

 ControlPointID = Wz_RequSubnodeCabine_1 # Unique identifier (name or number)
 # for a s ensor in a system
 # => this will be converted to the MCI
 # identif ier of <SCPID>(<IPADR>,<PORT>)
 ControlPointType = IDL2RPC # Type of this control point, e.g. IDL2RPC or PRO PRIETARY
 ControlPointPort = 50520 # Access port of the SCP for direct requests
 # Individual control point configuration values e .g. device settings for all sensors
 <MCISensorSubnode>
 # Connected MCI subnode
 SubnodeIP = 192.168.178.200 # IP-address of subnode
 SubnodeRealtimePort = 50550 # Real-time port of subnode
 SubnodeUpdateInterval = 180s # Update interval for data from the subnode
 # (also propagat ed as concatenation to the higher
 # hierarchy leve ls e.g. 180s<<180s)
 </MCISensorSubnode>
</MCISensorControlPoint>

Code 3-2: Configuration example for a MCI Sensor Control Point with a connected MCI subnode

<MCINode>
 NodeID = Wz_SubnodeCabine_1 # Unique identifier (name or number) for a sensor
 # in a system => this will be converted to the MCI
 # identifier of <SCPI D>(<IPADR>,<PORT>)
 NodeType = IDL2RPC # Type of this control point, e.g. IDL2RPC or PRO PRIETARY
 NodeRealtimePort = 50600 # Access port of the SCP for direct requests
 NodeSelectPort = 50601 # Access port of the SCP for history requests
 # Individual control point configuration values e .g. device settings for all sensors
</MCINode>

Code 3-3: Configuration example for a MCI Node Data Server (used by real-time and selectable data

server)

The net sensor identification, used in the system to identify the sensor over a complete hierarchical architecture,

is generated automatically using a concatenation of the different identifiers in combination with the IP-addresses

and the ports (see figure 3-3). If a proprietary sensor only propagates data to the data storage system it will be

registered with the combined ControlPointID and SensorID (e.g. ControlPointID<<SensorID as net sensor

identification) on the local data system. If it uses the IDL2RPC style and offers the data also on a separate port, it

uses the combination of the ControlPointID with IP-address and Port in brackets and the SensorID (e.g. with the

example above “Wz_Invar_1(193.174.168.100,50500)<< Wz_TempCenter_1” as net sensor identification). The

concatenation of these names are done automatically within the data storage system interface. As the data are

also offered over a real-time and selectable data server the concatenation is extended with the information about

the access server (e.g.

“Wz_SubnodeCabine_1(193.174.168.100,50600)<<Wz_Invar_1(193.174.168.100,50500)<<Wz_TempCenter_1” as

net sensor identification). The next hierarchy level follows the same style and so on. A more illustrating example

is shown in figure 3-3.

13

Fig. 3-3: Illustration of the compilation of net sensor identifiers in hierarchical systems

All of these structures are organized using a standardized interface in a library to the data storage system

(shared object .so in combination with header files). All functionalities are hidden behind this interface module

which is similar to the IDL2RPC remote procedure call interface. Main part of the data storage system is the

architecture of the node-internal database, which is kept very simple. All administrative activities are operated in

the interface library, so that the user does not have to know anything about databases at all. A possible database

structure is shown in figure 3-4 and 3-5.

Fig. 3-4: Database tables to administrate sensors and sensor control points

The administrative tables contain redundant information, once in configuration file text form and once in

separated simply accessible information. Changes can only be propagated in form of configuration files. The

information is then split up into the second table which might also contain local adaption e.g. as the locally used

sensor update interval in hierarchical systems.

The data tables contain the time-tagged current values, the time-tagged historic values in sensor specific

separate tables per sensor and the time-tagged log information in sensor specific separate tables. Each table

contains the time in Modified Julian Date (MJD) including time to a precision of msec. This offers a possibility for

simple ordering of values. The values themselves are saved in IEEE double-precision format. If ASCII conversions

are processed, the complete double-precision number (decimal places) are used. Each value record contains a

flag for alarm levels, where 0 = no alarm, 1 = sensor control point alarm, 2 = warning, 3 = alert. If additional

specifications are necessary, they can be coded with alarm values greater than 3.

Fig. 3-4: Database tables to save data of sensors

The archiving system of the MCI node uses tables and configuration information to create separated daily files

located in day and year folders under the directory /archive/MCI/<NetSensorID>. Proprietary file writer in the

sensor control points itself can write to anywhere.

14

Another possibility is the installation of a local web server (as e.g. Apache). It can be used to offer configuration

and data access via Web pages maybe in combination with some graphical or higher level monitoring tools (as

Zabbix)

4. VLBI2010 MCI Standardized Interface functionality

Main goal of this document is to define standardized interface functionality for the above described hardware

and software structure. The C-function collection in code 4-1 is a first realization of such an interface.

Explanations are included to the function heads.

// Function return values
const MCISCP_RET_OK = 0; // Function returns ok
const MCISCP_RET_NOK = 1; // Function returns not ok

// Warning levels
const const MCISENSOR_WARNINGLEVEL_OK = 0; // No warning
const const MCISENSOR_WARNINGLEVEL_SCPALARM = 1; // Sensor control point server alarm
const const MCISENSOR_WARNINGLEVEL_WARNING = 2; // Value is in warning interval
const const MCISENSOR_WARNINGLEVEL_ALERT = 3; // Value reached alert interval

// Interface function definition
interface <SensorControlPointName> #MCIVer1.0_20120417001
{
 // ###
 // GET MONITORING DATA
 // ###
 /***
 function usGetCurrentDataText
 ***/
 /*! Return the content of the database table for current values
 in form of the original database table
 with the possibility to select dedicated net sensors by ID
 Returns: NetSensorID | MJD | AlarmLevel | Value
 \param in pstrNetSensorIDSelect<> -> Array to select net sensors or empty
 \param out string pstrSensorValueColumnNames<> <- The table column head lines as array
 \param out string ppstrSensorValueTable<><> <- 2-dim. Array with the table content of the
 request
 \return unsigned short <- Error code (0 = ok, >0 = error)
 ***/
 /* author MCI colaboration group
 date 17.04.2012
 revision -
 info -
 ***/
 unsigned short usGetCurrentDataText (in pstrNetSensorIDSelect<>,
 out string pstrSensorValueColumnNames<>,
 out string ppstrSensorValueTable<><>);
 /***
 function usGetCurrentDataMJD
 ***/
 /*! Return the content of the database table for current values
 in form of separated column vectors and in Modified Julian Date (MJD)
 with the possibility to select dedicated net sensors by ID
 (each row over the column vectors is one sensor entry)
 \param in pstrNetSensorIDSelect<> <-> Array to select net sensors or empty,
 returns the resulting, found net sensors
 \param out double pdTimeMJD<> <- Resulting array with the record times in MJD
 \param out unsigned int puiAlarmLevel<> <- Resulting array with alarm levels
 \param out double pdValue<> <- Resulting array with values
 \return unsigned short <- Error code (0 = ok, >0 = error)
 ***/
 /* author MCI colaboration group
 date 17.04.2012
 revision -
 info -
 ***/
 unsigned short usGetCurrentDataMJD (inout pstrNetSensorID<>,
 out double pdTimeMJD<>,
 out unsigned int puiAlarmLevel<>,
 out double pdValue<>);

 /***
 function usGetCurrentDataTextSinceMJD
 ***/
 /*! Same as usGetCurrentDataText including a selection for dates since a
 dedicated time, so that only values are transferred which have been updated
 during this time period
 \param in pstrNetSensorIDSelect<> -> Array to select net sensors or empty
 \param in double dSinceTimeMJD -> Time since when the data sh ould be returned
 \param out string pstrSensorValueColumnNames<> <- The table column head lines as array
 \param out string ppstrSensorValueTable<><> <- 2-dim. Array with the table content of the
 request
 \return unsigned short <- Error code (0 = ok, >0 = error)

15

 ***/
 /* author MCI colaboration group
 date 17.04.2012
 revision -
 info -
 ***/
 unsigned short usGetCurrentDataTextSinceMJD (in pstrNetSensorIDSelect<>,
 in double dSinceTimeMJD,
 out string pstrSensorValueColumnNames<>,
 out string ppstrSensorValueTable<><>);
 /***
 function usGetDataFromToMJDText
 ***/
 /*! Transfer complete tables of data of one sensor with selection of start
 time and an end time
 \param in strNetSensorIDSelect -> Select net sensors
 \param in double dStarttimeMJD -> Time since when the data sh ould be returned
 \param in double dEndtimeMJD -> Time to which data should be returned
 \param in unsigned short usTableSelector -> Select table (0=Value&Log, 1=Value, 2=Log)
 \param out string pstrSensorValueColumnNames<> <- The table column head lines as array
 \param out string ppstrSensorValueTable<><> <- 2-dim. Array with the table content of the
 request for data with the structure
 NetSensorID | MJD | AlarmLevel | Value
 \param out string pstrSensorLogColumnNames <> <- The table column head lines as array
 \param out string ppstrSensorLogTable <><> <- 2-dim. Array with the table content of the
 request for logs with the structure
 NetSensorID | MJD | AlarmLevel | LogText
 \return unsigned short <- Error code (0 = ok, >0 = error)
 ***/
 /* author MCI colaboration group
 date 17.04.2012
 revision -
 info -
 ***/
 unsigned short usGetDataFromToMJDText (in strSelectNetSensorID,
 in double dStarttimeMJD,
 in double dEndtimeMJD,
 in unsigned short usTableSelector,
 out string pstrSensorValueColumnNames<>,
 out string ppstrSensorValueTable<><>,
 out string pstrSensorLogColumnNames<>,
 out string ppstrSensorLogTable<><>);

 // ## ###
 // SET MONITORING DATA
 // ## ###
 /***
 function usSetDataText
 ***/
 /*! Insert a data table into system with the structure
 NetSensorID | MJD | AlarmLevel | Value
 \param in string ppstrSensorValueTable<><> -> 2-dim. Array with the table content of the
 insert
 \return unsigned short <- Error code (0 = ok, >0 = error)
 ***/
 /* author MCI colaboration group
 date 17.04.2012
 revision -
 info -
 ***/
 unsigned short usSetDataText (in string ppstrSensorValueTable <><>);
 /***
 function usSetSingleDataMJD
 ***/
 /*! Insert a single data set into system
 \param in string strNetSensorID -> Net sensor identifier
 \param in double dTimeMJD -> Time in MJD when the value was recorded
 \param in unsigned int uiAlarmLevel -> Alarm level of value
 \param in double dValue -> The value itself
 \return unsigned short <- Error code (0 = ok, >0 = error)
 ***/
 /* author MCI colaboration group
 date 17.04.2012
 revision -
 info -
 ***/
 unsigned short usSetSingleDataMJD (in string strNetSensorID,
 in double dTimeMJD,
 in unsigned int uiAlarmLevel,
 in double dValue);
 /***
 function usSetDataMJD
 ***/
 /*! Insert a data sets into system
 \param in string pstrNetSensorID <> -> Net sensor identifiers
 \param in double pdTimeMJD <> -> Times in MJD when the values were recorded
 \param in unsigned int puiAlarmLevel <> -> Alarm levels of value
 \param in double pdValue <> -> The values itself

16

 \return unsigned short <- Error code (0 = ok, >0 = error)
 ***/
 /* author MCI colaboration group
 date 17.04.2012
 revision -
 info -
 ***/
 unsigned short usSetDataMJD (in string pstrNetSensorID <>,
 in double pdTimeMJD <>,
 in unsigned int puiAlarmLevel <>,
 in double pdValue <>);

 // ###
 // SET LOG DATA
 // ###
 /***
 function usSetLog
 ***/
 /*! Insert a log table into system with the structure
 NetSensorID | MJD | AlarmLevel | LogText
 \param in string ppstrSensorLogTable <><> -> 2-dim. Array with the table content of the
 insert
 \return unsigned short <- Error code (0 = ok, >0 = error)
 ***/
 /* author MCI colaboration group
 date 17.04.2012
 revision -
 info -
 ***/
 unsigned short usSetLog (in string ppstrSensorLogTable <><>);
 /***
 function usSetSingleLogMJD
 ***/
 /*! Insert a single log set into system
 \param in string strNetSensorID -> Net sensor identifier
 \param in double dTimeMJD -> Time in MJD when the value was recorded
 \param in unsigned int uiAlarmLevel -> Alarm level of value
 \param in string strLogText -> The log text itself
 \return unsigned short <- Error code (0 = ok, >0 = error)
 ***/
 /* author MCI colaboration group
 date 17.04.2012
 revision -
 info -
 ***/
 unsigned short usSetSingleLogMJD (in string strNetSensorID,
 in double dTimeMJD,
 in unsigned int uiAlarmLevel,
 in string strLogText);
 /***
 function usSetLogMJD
 ***/
 /*! Insert a log sets into system
 \param in string pstrNetSensorID <> -> Net sensor identifiers
 \param in double pdTimeMJD <> -> Times in MJD when the values were recorded
 \param in unsigned int puiAlarmLevel <> -> Alarm levels of value
 \param in string pstrLogText <> -> The log texts itself
 \return unsigned short <- Error code (0 = ok, >0 = error)
 ***/
 /* author MCI colaboration group
 date 17.04.2012
 revision -
 info -
 ***/
 unsigned short usSetLogMJD (in string pstrNetSensorID <>,
 in double pdTimeMJD <>,
 in unsigned int puiAlarmLevel <>,
 in string pstrLogText <>);

 // ## ###
 // SET CONFIGURATION TO ADMINISTRATE SENSOR CONTROL POINT
 // ###
 /***
 function usSetSingleConfigurationMJD
 ***/
 /*! Insert a single configuration into system
 \param in string strNetSensorControlPointID -> Net sensor control point identifier
 \param in double dTimeMJD -> Valid-from time of configuration
 \param in string strConfigFileContent -> Configuration content
 \return unsigned short <- Error code (0 = ok, >0 = error)
 ***/
 /* author MCI colaboration group
 date 17.04.2012
 revision -
 info -
 ***/
 unsigned short usSetSingleConfigurationMJD (in string strNetSensorControlPointID,
 in double dTimeMJD,

17

 in string strConfigFileContent);
 /***
 function usSetConfigurationMJD
 ***/
 /*! Insert configurations into system
 \param in string pstrNetSensorControlPointID <> -> Net sensor control point identifiers
 \param in double pdTimeMJD <> -> Valid-from times of configuration
 \param in string pstrConfigFileContent <> -> Configuration contents
 \return unsigned short <- Error code (0 = ok, >0 = error)
 ***/
 /* author MCI colaboration group
 date 17.04.2012
 revision -
 info -
 ***/
 unsigned short usSetConfigurationMJD (in string pstrNetSensorControlPointID <>,
 in double pdTimeMJD <>
 in string pstrConfigFileContent <>);

 // ###
 // GET CONFIGURATION TO ADMINISTRATE SENSOR CONTROL POINT
 // ###
 /***
 function usGetConfigurationMJD
 ***/
 /*! Return configurations from system with selection of sensors
 \param inout string pstrNetSensorControlPointID <> <-> Net sensor control point identifiers
 and selector
 \param out double pdTimeMJD <> <- Valid-from times of configuration
 \param out string pstrConfigFileContent <> <- Configuration contents
 \return unsigned short <- Error code (0 = ok, >0 = error)
 ***/
 /* author MCI colaboration group
 date 17.04.2012
 revision -
 info -
 ***/
 unsigned short usGetConfigurationMJD (inout string pstrNetSensorControlPointID <>,
 out double pdTimeMJD <>,
 out string pstrConfigFileContent <>);
 /***
 function usGetConfigurationSinceMJD
 ***/
 /*! Return configurations from system with selection of sensors (similar to
 usGetConfigurationMJD) with an additional selector, to just get recently changed
 configurations
 \param inout string pstrNetSensorControlPointID <> <-> Net sensor control point identifiers
 and selector
 \param in double dSinceTimeMJD -> Select from this time on
 \param out double pdTimeMJD <> <- Valid-from times of configuration
 \param out string pstrConfigFileContent <> <- Configuration contents
 \return unsigned short <- Error code (0 = ok, >0 = error)
 ***/
 /* author MCI colaboration group
 date 17.04.2012
 revision -
 info -
 ***/
 unsigned short usGetConfigurationSinceMJD (inout string pstrNetSensorControlPointID <>,
 in double dSinceTimeMJD,
 out double pdTimeMJD <>,
 out string pstrConfigFileContent <>);

 // ## ###
 // OTHER ADMINISTRATION FUNCTIONS
 // ## ###
 /***
 function usGetRegisteredNetSensorIDs
 ***/
 /*! Return a list of registered net sensors
 \param out string pstrNetSensorID <> <- List of sensor identifiers
 \return unsigned short <- Error code (0 = ok, >0 = error)
 ***/
 /* author MCI colaboration group
 date 17.04.2012
 revision -
 info -
 ***/
 unsigned short usGetRegisteredNetSensorIDs (out string pstrNetSensorID <>);

 // ## ###
 // Individual, proprietary functions
 // ## ###
 // <your personal functions>
};

Code 4-1: The suggested interface functionality to communicate with a MCI system monitoring node in

IDL2RPC notation

18

5. Monitor control points in radio telescopes

A suggestion for monitoring of IVS telescopes separates the different types of monitoring data into three different

types:

• Data for science and analysis (mostly lower sampling rates of several seconds; scheduled or predefined;

e.g. meteo, WVR, clock offsets, ...)

• Data for system operations (medium sampling rates of seconds and sub-seconds similar to the human

re-action times; permanently available for system control; e.g. power supply, wind, emergency stops,

rack temperatures, ...)

• Data for diagnostics (higher sampling rates of milli- and micro-seconds; on demand according to sensor

control point possibilities; e.g. servo currents, contouring errors, ...)

Recorded data can be used either for one single usage type or can be for different types.

19

SysMon

Hardware

and

Installation

by

Alexander Neidhardt

HardwareHardwareHardwareHardware

• Standard equipment on standard, robust

• Modular, multi-layer system

• Open for several devices and sonsors

• Passive system for monitoring without actuators

• Linux-operating system (maybe minimal installation)

• Open Source

• C/C++

• Communication internal with

• Vendor independence

20

• Standard equipment on standard, robust architectures

layer system

• Open for several devices and sonsors

• Passive system for monitoring without actuators

operating system (maybe minimal installation)

• Communication internal with idl2rpc-generator

21

22

23

24

25

26

27

28

29

Zabbix 2.2.8

for

SysMon

by

Katharina Kirschbauer

Alexander Neidhardt

30

Zabbix 2.2.8 Workshop

(http://lab4.org/wiki/Zabbix_Schnellstart#Den_ersten_Host_anlegen)

I. LOGIN TO THE USER FRONT-END

31

II. DASHBOARD

For configurations: use the tool-button in the right upper corner to customize your personal
dashboard.

OVERVIEW

Monitoring shows the configurations of the Zabbix-system

 Dashboard first page after login (customizable);
most important configurations and statuses, including
own graphs, screens and maps

 Overview Type → Triggers: status of each trigger
Type → Data: value of each item (like 'Latest Data'

32

without details (e.g. Last check))

 Latest Data value of each system- or customized-item with details
(Interval, History, Trends, Type, Last check, Last value,
Change, Graph ('spontaneous graphs' → system-
generated graphs), Info)

Reports reports about the status of zabbix, items and triggers

Configuration customizing of the zabbix-system

 Hosts configuration of hosts;
with the linked items, triggers, graphs and templates;
an overview about their status and availability

 Screens configuration of screens

 Maps configuration of maps

Administration administration of the zabbix-system

 Users configuration of users and groups and specified
permissions

 Queue items that are waiting to be updated are displayed;
ideally, it should all be green (no items in the queue);
red = lacking server performance, connection problems
or problems with agents

33

a) Item

b) Trigger

◦ check the items' value (e.g. throw a warning, if the value is too low)
c) Action

◦ 'error handling'
◦ which action should be executed when a trigger appears (e.g. send and e-mail

to the systems' administrator)
d) Graph

◦ simple graph: system-made graph for each item of a numeric type
◦ graph: ability to bring all the interesting items for a customer into one graph

e) Map
◦ to create a view of the network/interfaces you use

f) Screen
◦ to bring all the important graphs/maps/information into one screen

g) Template
◦ the zabbix-system contents pre-installed templates
◦ a template inherits pre-defined items, triggers, graphs, maps, screens, …
◦ you can export them or import a self-customized template (xml-file)

value of a sensor

status of a process

ping

ITEM

cpu interrupt time

available memory

number of database-tables

value of a tuple in a specific table

logfile

...

34

III. FIRST STEPS

a) Create a host (logged in as 'Admin')
- Configuration → Hosts

- Select Group: all (dropdown-menu, right upper corner)
- Create host
 Name = Example
 New Group = Experimental
 IP = 127.0.0.1
 Port = 10050

35

- Save

b) Create the first item
- Configuration → Hosts

- The new Host 'Example' is now available
- Select Items(0)

- Create Item
 Name = Ping Check
 Type = Simple Check
 Key = icmpping (delete the options and all brackets < >)
 New Application = Availability

36

- Save

37

c) Read the measured value

- Monitoring → Latest data
- Group: Experimental (wait for some seconds and reload the page)
- Last value = 1 → Ping is successful (0 = not successful)

38

d) Create the first trigger
- Configuration → Hosts

- Select Triggers(0)

- Create Trigger
 Name = Ping Check Failed

 Expression > Select Add
 Item > Select Ping Check
 Insert
 Severity = Information

39

- Save

40

e) Status of the trigger (wait for a few seconds and refresh page)
- Monitoring → Triggers

- Status = OK

f) Test your trigger
- Configuration → Hosts: set an incorrect IP (e.g. 192.0.0.1) for your host
 'Example' and save the configuration
- Monitoring → Triggers (wait for a few seconds and refresh page)
- Status = PROBLEM

- have a look at other monitoring pages:
 Monitoring → Latest Data

41

 Last Value = 0

 Monitoring → Dashboard

42

IV. MONITORING OF THE INVAR-VALUES IN ZABBIX AS EXAMPLE

a) Create a host
 Name = Invar sender
 New Group = Invar Sender
 IP = 127.0.0.1
 Port = 10050

b) Create items
e.g. Name = TempBottom (sensor temperature bottom)
 Type = Zabbix trapper
 Key = value.tempbottom
 Type of Information = Numeric (float)
 Units = °C

 Store Value = As is
Save
(Sensors: TempBottom, TempTop, TempCenter, TempWall, WireLength)

43

c) Create a Textfile with the values
Format: <hostname> <key> <value> (hostname and key like those you created in
zabbix, values with a point)

d) Send the file to zabbix (typing the following command into your terminal) and check
the values of the items in the zabbix-system
zabbix_sender -z 127.0.0.1 -i test.txt

Configuration → Latest Data

44

e) Create a graph
- Configuration → Hosts
- Select Graphs(0) of our host InvarSender
- Create a graph with our InvarSender-Items

- Control the Preview and Save

45

f) Create triggers for our items

e.g. Name = TempBottom Warning
 Expression > Add
 Item > Select TempBottom
 Function = Last (most recent) T value is < N
 N = 5

 Insert
 Severity = Warning

46

 Save

47

7) Add our new invar graph to the dashboard
- Monitoring → Dashboard
- Select
- Add our customized graph Invar Values to Favourite graphs

48

8) Create a map
- Configuration → Maps
- Create Map
 Name = Local Network
 Width = 680
 Height = 200
 Icon Highlight = ☑

 Mark elements … = ☑
 Expand single problems = ☑
 Save

49

- Select our new map Local Network
- Icon + (a new icon appears, for the invar-sender)
- select the new icon to configure it
 Type = Host
 Label = {HOST.NAME}
 {HOST.CONN}
 Host = InvarSender
 Icons = Satellite_antenna
 Apply

- Icon + (for the zabbix-system itself)
- select the new icon
 Type = Host
 Label = {HOST.NAME}
 {HOST.CONN}
 Host = ZabbixServer
 Icons = Zabbix_server_3D
 Apply

50

- Link the icons
 mark them and select Link + and Apply1
 Save the new map

51

9) Add the map to Favorite Maps in our dashboard
(see 7)

52

10) Create a screen
- Configuration → Screens
- Create screen
 Name = Invar Screen
 Columns = 2
 Rows = 2
 Save
- Select the new screen
- Click on Change an select our graph Invar Values
- Save

- Click Change in the other column and select our map Local Network
- Save

- Click Change in a remaining column/row and select
 Resouce = Server info

53

 Save

54

11) Add the screen to the Favourite Screens in our dashboard
 see 7) and open it

The zabbix-dashboard at the end of our workshop

55

 12) Send a notification to the administrator/user in case of an error
 - Administration → Media types (pre-defined media types)
 E-Mail: send an e-mail
 Jabber: instant messagging
 SMS: send a sms to the administrator/user
 or create an own media type

 - Configuration → Actions
 adjust and enable the pre-defined action called 'Report problems to
 Zabbix administrators' with a new condition (e.g. Trigger = InvarSender
 TempBottom Warning) and the user you would like to notify

 - Administration → Users (select user) → Media
 add a new media and the 'send to' user (e.g. e-mail, admin@zabbix.com)

 Now, if the defined trigger occurs, the action will sent a notification to the user you
defined.

